Enlarge / The Fermi space telescope. (credit: NASA)

High energy cosmic rays are something of a conundrum wrapped in an enigma. Essentially, they can't come from very far away and still have the energy they possess. To that end, cosmic rays should originate from within the Milky Way. Yet, they seem to be coming from every direction: no matter where you look in space, you have the same probability of seeing a high energy cosmic ray. A new paper has, to the disappointment of the 90 plus authors, confirmed this uniformity to a rather high degree.

Living in a frosted fish bowl

Let's start this with an analogy. Imagine that you are inside a frosted glass bulb. When the Sun comes up, you can see light, but it seems to come from every direction evenly. There is no way to tell that the light actually comes from a single source, shining from a single direction unless the light is sufficiently bright or the frosting on the window is not too dense. Then, even though you still see light from every direction, the slight brightness increase in one direction tells you that there is a light source in that direction.

Cosmic rays with energies up to 2TeV are thought to originate from dying supernovae in our own galaxy. Observations from the Fermi satellite have confirmed that some cosmic rays do originate in supernovae, but these observations don't seem to account for the full total of cosmic rays. (Note that there are cosmic rays at much higher energies, but these certainly do not originate within our galaxy.)

Read 12 remaining paragraphs | Comments